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Abstract

A solution is given for problems involving non!axisymmetric dynamic impact loading of a penny shaped
crack in a transversely isotropic medium[ Laplace and Hankel transforms are used to reduce the equations
of elasticity to integral equations\ and solutions are obtained for the three modes of fracture[ The stress
intensity factors are determined for a penny shaped crack loaded by concentrated normal impact forces and
concentrated radial shear impact forces[ The integral equations are solved by numerical methods\ and the
results are plotted showing how the dynamic stress intensity factors are in~uenced by the asymmetric loading[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Many _brous composites may be modeled as transversely isotropic materials with the stress _eld
determined by _ve elastic constants "Christensen\ 0868#[ The concept of the stress intensity factor
"SIF# was shown to be applicable to such materials\ since as in isotropic materials\ the stress _eld
at the crack tip was shown to have the square root singularities associated with cracks in isotropic
solids\ even though the stresses depended on the degree of anisotropy "Sih and Chen\ 0870#[

A penny shaped crack under general static loading in a transversely isotropic material has been
investigated by numerous authors including Chen "0855# and Chen and Soni "0853#[ These static
solutions have been collected in the text by Sih and Chen "0870# and Kassir and Sih "0866#[

The basic outcome of these studies has been to show that the stress at the tip of the crack was
dependent on the elastic constants of the solid[ However\ the stress intensity factor\ for solids with
in_nite boundaries\ was determined to be independent of the material constants and equal to the
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value obtained for the isotropic case[ If _nite boundaries are imposed on the solid\ or if more than
one crack is located within the composite\ then the stress intensity factor becomes dependent on
the material constants[

Dynamic crack problems are not as readily solved as static ones\ due to the complex behavior
of the elastic waves near the crack faces[ Known solutions may be divided into two groups[

The _rst of these two groups deals with harmonic or steady state loading[ The arrival of a
harmonic wave at the crack will produce a harmonic scattered wave[ The total solution of the
crack problem is the sum of the incident and scattered wave[ Because the scattered wave carries
information about the crack\ only the scattered part of the solution determines the dynamic stress
intensity factor[

Robertson "0855# studied the di}raction of harmonic waves on a penny shaped crack in an
isotropic medium[ The dynamic intensity factor for such a loading was determined by Mal "0857#\
for long wave lengths "low frequency#\ and found to be always larger than the static value[ Radial
and shear loading were discussed by Sih and Loeber "0858#[ These solutions which are for
axisymmetric harmonic loading of the crack\ are collected in the texts by Sih "0870# and Parton
and Boriskovsky "0878#[

Krenk and Schmidt "0871# have given a numerical solution of the di}raction problem by
expansion of the displacement _eld in Fourier coe.cients\ an approach which will be used in this
paper[ Krenk and Schmidt did not determine expressions for the stress intensity factors[ In 0872\
Martin and Wickham\ using an integral formulation derived by Martin\ obtained the solution for
the di}raction of harmonic waves for a penny shaped crack at an arbitrary angle of incidence[
Martin and Wickham|s solution is obtained in terms of Fourier expansions and coupled integral
equations for the components of displacement[ Furthermore\ they obtained expressions for the
dynamic stress intensity factors for general harmonic loading\ although they gave no computational
results[

Tsai "0877# determined the harmonic axisymmetric stress intensity factor for a penny shaped
crack in a transversely isotropic material at low frequencies[ Tsai used an integral equation
approach and numerically obtained the harmonic SIF for two characteristic transversely isotropic
materials] E!Glass Epoxy and Graphite Epoxy[ He found very little di}erence in the values of the
dynamic SIF for the two di}erent transversely isotropic materials[ In particular\ Tsai obtained
peak values of 0[48 times the static value for the E!Glass Epoxy and 0[47 times the static value for
the Graphite Epoxy[

The second group involves transient response due to impact loading[ Axisymmetric impact
loading of a penny shaped crack in an isotropic material was _rst investigated by Embley and Sih
"0860# for normal impact\ and for torsional transient loading by Sih and Embley "0861#[ Both of
these results along with others of interest in this area\ are collected in the monograph by Sih "0866#
and Parton and Boriskovsky "0878#[ For normal loading\ Embley and Sih found that even for
steel\ with a Poisson|s ratio of 9[18\ the dynamic SIF had a maximum value of 0[12 times greater
than the static value[ Decreasing Poisson|s ratio had the e}ect of decreasing the overshoot of the
dynamic stress intensity factor[ For impact loading of penny shaped cracks\ as time becomes
in_nite\ the dynamic stress intensity factor approaches the static value[

Solutions for axisymmetric dynamic loading of penny shaped cracks by concentrated forces in
isotropic materials have been obtained by Chen et al[ "0885#[ The authors used an integral equation
approach to obtain a boundary integral for the problem under consideration[ They show that the
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location of the concentrated forces\ which produces the largest value of the dynamic overshoot\
di}ers from the location which produces the largest value of the static stress intensity factor[

Shindo and Nozaki "0876# determined the axisymmetric dynamic stress intensity factor for a
penny shaped crack in a transversely isotropic material under impact loads[ The paper examined
both in_nite and _nite boundaries on the solid[ The in~uence of di}erent transversely isotropic
materials on the dynamic SIF was found to be minimal[ For the case of in_nite boundaries\ the
dynamic SIF was determined to have a value of 0[34 times greater than the static value[ The e}ect
of the boundaries was to increase the value of the dynamic SIF[

In engineering materials more than one penny shaped crack may exist simultaneously[ In order
to solve problems involving multiple cracks\ the stress _eld acting on any given crack must be
obtained "Rizza\ 0884#[ This stress _eld is determined from the sum of two contributions[ The _rst
contribution is due to the far!_eld applied loads[ The second part is the resultant due to the
in~uence of all other cracks located in the material[ This second contribution includes terms which
are asymmetric depending on the relative positions of the cracks[ Therefore\ in order to solve
multiple crack problems\ the solution for asymmetric loading of a penny shaped crack is desired[
However\ the solutions mentioned have considered only axisymmetric loadings[

The purpose of this work is to present a solution for the dynamic fracture of a penny shaped crack
in a transversely isotropic under non!axisymmetric loads[ The Laplace and Hankel transforms as
well as the Fourier series will be used to reduce the equations of elastodynamics to integral
equations[ Numerically\ for a typical transversely isotropic material\ the stress intensity factors
will be inverted to recover the time dependency for the title problem under concentrated normal
and radial shear forces[ Furthermore\ these general solutions will be shown to reduce to known
special cases[

0[0[ Formulation of the problem

Consider a penny shaped crack located in an in_nite transversely isotropic medium[ Such a
material may be used to model a _brous composite with the z coordinate along the _ber direction[
We assume the crack radius is of an order larger than the inhomogeneity of the material\ so that
the material may be considered homogeneous[ A cylindrical coordinate system "r\ u\ z# is used with
the origin placed at the center of the crack and the crack occupying the region 9 ¾ r ¾ a\ 9 ¾ u ¾ 1p

and z � 9[
In the absence of body forces\ the equations of motion are "Sokolnikof\ 0876#]
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where u\ v and w are the displacements in the radial\ tangential and axial direction\ respectively[
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Furthermore\ the components of stress are related to the strain through Hooke|s law for trans!
versely isotropic materials as]

srr � C00err¦C01euu¦C02ezz "1a#

suu � C01err¦C00euu¦C02ezz "1b#

szz � C02err¦C02euu¦C22ezz "1c#

srz � C33erz suz � C33euz "1d#

sru � 0
1
"C00−C01#eru "1e#

where the C|s represent the elastic constants and err\ euu\ ezz\ erz\ euz\ and eru are the components of
strain[

1[ Formal solution

The equations of motion may be rewritten in terms of the displacement by substituting eqn set
"1# into "0#\ and using the de_nitions of the strain components[ Upon doing so\ eqn "0# becomes

L00"u#¦L01"v#¦L02"w# � L"u# "2a#

L10"u#¦L11"v#¦L12"w# � L"v# "2b#

L20"u#¦L21"v#¦L22"w# � L"w# "2c#

The operators de_ned in eqn "2# are

L00" f # � C00

1

1r $
0
r

1"rf #
1r %¦C55

0

r1

11" f #

1u1
¦C33

11" f #

1z1
"3a#

L01" f # � −"C00¦C55#
0

r1

1" f #
1u

¦
"C00¦C01#

1
0
r

11" f #
1r 1u

"3b#

L02" f # � "C02¦C33#
11" f #
1r 1z

"3c#

L10" f # � "C00¦C55#
0

r1

1" f #
1u

"3d#

L11" f # � C55

1

1r $
0
r

1"rf #
1r %¦C00

0
r

11" f #

1u1
¦C33

11" f #

1z1
"3e#

L12" f # � "C02¦C33#
0
r

11" f #
1u 1z

� L21 "3f#

L20" f # � "C02¦C33#
1

1z $
0
r

1"rf #
1r % "3g#



R[ Rizza\ S[ Nair : International Journal of Solids and Structures 25 "0888# 24Ð53 28
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with r being the density of the material[
Equation set "2# may be reduced by de_ning certain potential functions fi\ i � 0\ 1\ 2 in the form
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The functions mi\ r � 0\ 1 will be determined shortly[
Through the use of "4#\ the equations of motion take on the forms
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where x � f0¦f1 and c � m0f0¦m1f1[ The problem has now been reduced to obtaining
expressions for f0\ f1\ and f2[

In order to obtain these solutions\ we assume the loading on the crack may be expanded in
Fourier series\ with respect to the polar angle u\ so that the potential functions may be taken in
terms of sine and cosine functions[ This reduces "5# to a set of equations which is two!dimensional[

Let us take fi � f¹ i exp "inu#\ i � 0\ 1\ 2\ n � 9\ 0\ [ [ [ and de_ne x¹ � f¹ 0¦f¹ 1\ and cÞ � m0f¹ 0¦m1f¹ 1

then equation set "5# becomes after some simpli_cation
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C55 0
0
r

1

1r 0r
1

1r1−
n1

r11f¹ 2¦C33

11f¹ 2

1z1
� r

11f¹ 2

1t1
"6c#

In eqn "6#\ the operator in the brackets may be reduced by the use of the Hankel transform of
order n[ The Laplace transform with transform variable p may be used to remove the dependency
of eqn "0# on the time variable[

The Hankel transform of order n of a function f "r# is de_ned by the integral expression "Andrews
and Shivamoggi\ 0877#

Hn"f "r#^ r : j# � g
�

9

rf "r#Jn"jr# dr "7a#

where Jn"jr# is the Bessel function of order n[ The inverse of the Hankel transform is de_ned as
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The Laplace integral transform of the function F"p# with transform variable p of a function f "t#
is de_ned as the integral

F"p# � L"f "t#^ t : p# � g
�

9

exp "−pt# f "t# dt "8a#

and its inverse is given by

f "t# � L−0"F"p#^ p : t# �
0

1pi gBr

exp "pt#F"p# dp "8b#

where Br indicates the Bromwich path of integration de_ned in the complex plane to the right of
all singularities of F"p#[

Application of "7# and "8# to "6# shows that f0\ f1\ and f2 satisfy ordinary di}erential equations
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where we have de_ned k � p:j and a0 � C00¦rk1\ a1 � C33¦rk1[
Equation "09# has a solution if we take
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The constants ni\ i � 0\ 1 are the solutions of the quadratic equation

a0a1n
1¦n""C02¦C33#1−C22a0−C33a1#¦C22C33 � 9 "01#

In the case where the dynamic terms vanish "that is\ p � 9#\ we see that "00# and "01# reduce to
that of the static case "Sih and Chen\ 0870#[ Let M0\ M1\ N0\ N1\ and N2 be constants which are the
solutions of eqn "01#\ when p � 9\ that is\ the static solution[ Then N0 and N1 satisfy the quadratic
equation
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and "00# becomes

C33¦"C02¦C33#Mi

C00

�
C22Mi

"C02¦C33#¦C33Mi

� Ni i � 0\ 1 "03a#

N2 �
C33

C55

"03b#

Mi �
C00Ni

C02¦C33

�
"C02¦C33#Ni

C22−C33Ni

"03c#

Now suppose that the loading is dynamic but that the material is isotropic[ Then by putting
C33 � C55 � m\ C55 � "C0−C01#:1\ C02 � C01 � l and C00 � l¦1m\ the dynamic isotropic solution
is obtained[ In this case\ l and m are the Lame� constants[ Equation "00# becomes

ni �
j1

g1
i

i � 0\ 1 and n2 � n0 "isotropic and dynamic# "04a#

where

g1
i � 0j1¦

p1

c1
i 1 "04b#

and the constants c0 and c1 are the well!known wave speeds for an isotropic material[ In particular\
c1

0 � ð"l¦1G#:rŁ is the dilatational wave speed and c1
1 � "m:r# is the transverse or shear wave speed

"Sokolniko}\ 0876#[
The functions mi"j\ p# reduce to

m0 � 0\ m1 �
j1

g1
1

"isotropic and dynamic# "05#

The di}erential equations in "09# have exponential solutions of the form f ½ exp "2aijz#[ We
assume that ai � "0:ni#0:1 have positive real parts for z × 9[ Furthermore\ we can assume without
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any loss of generality that the applied stresses szz\ srz\ are even functions and suz is an odd function\
as will be the case for most applied loads under consideration[ Then\ by using the solutions of "09#\
the inverse Hankel transform of f¹ i\ the potentials may be written in the form

fi"j\ p# � s
�

n�9

"H−0
n ðBn

i "j\ p# exp "−aijz#^ j : rŁ# cos nu i � 0\ 1 "06a#

f2"j\ p# � s
�

n�0

"H−0
n ðB2"j\ p# exp "−a2jz#^ j : rŁ# sin nu "06b#

If the eveness and oddness of the applied stresses are changed then the sine and cosine terms in
eqn "06# are interchanged[ The functions Bn

i "j\ p#\ i � 0\ 1\ 2 are to be determined from the boundary
conditions[

For the sake of simplicity\ let us de_ne

dn
i "j\ p# � Bn

i "j\ p# exp "−aijz# i � 0\ 1\ 2 "07a#
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Then\ in the Laplace transform domain\ the displacements become
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Likewise\ the stresses may be written in the form

s�rz � −
C33

1
s
�
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n−0ð f n
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n¦0ð f n
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s�zz � s
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Boundary conditions for speci_c loading cases are now employed to determine the values of
Bn

i "j#[ The general loading may be split into two parts] the symmetric part and the skew!symmetric
part[ We consider each of these problems separately[
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2[ Solution of the symmetric part

Let the symmetric loading on the crack for z � 9 be a transient in time such as an impact load
of s"r\ u# applied at time t � 9[ The boundary conditions on the crack may be written in the form

szz � −s"r\ u#H"t# 9 ¾ r ¾ a "10a#

srz � suz � 9 r × a "10b#

w � 9 r × a "10c#

where H"t# is the Heaviside step function used to model the time dependency[ The Laplace
transform with transform variable p may be applied to the boundary conditions[ Then\ the normal
load on the crack may be expanded in Fourier cosine "or sine# series "Chen\ 0855# with Fourier
coe.cients an"r# given by

a9"r# �
0
p g

p

9

−
s"r\ u#

p
du "11a#

and

an"r# �
1
p g

p

9

−
s"r\ u#

p
cos nu du n � 0\ 1\ [ [ [ "11b#

The boundary conditions require that the shear stresses be zero for r × 9[ Using eqns "19a# and
"19b# along with "10b#\ for any arbitrary value of n\ it is found that Bn

2"j# � 9 and that

Bn
1"j\ p# � −X n1"j#

n0"j#
"0¦m0"j##
0¦m1"j##

Bn
0"j\ p# "12#

Applying this expression to "19c# and "08c#\ we obtain the dual integral equation for n � 9\ 0\ 1 [ [ [
and z � 9]

g
�

9

jG"j\ p#fn"j#Jn"jr# dj � a�n "r\ p# 9 ¾ r ³ a "13a#

g
�

9

fn"j\ p#Jn"jr# dj � 9 r × a "13b#

where a�n � an:h[ The constant h is the value of G"j# when j : � "or p � 9#\ that is\ when the static
limit is reached[ Thus\ when the applied loads are static\ eqn "13# reduces to the form given by Sih
and Chen "0870# or Chen "0855#[

When the material is isotropic\ eqn "13# reduces to that obtained by Sih "0866# for axisymmetric
loading of the penny shaped crack[ In this case\ put n � 9\ apply the reductions given in "04# and
"05# and rede_ne A"j\ p# � f9"j\ p#:j[ Then\ the function G"j\ p# becomes

G"j\ p# � `0"j\ p# �
c1

1

1pg0mj $01j1¦0
1
c11

1

−3g0g1j
11% "isotropic and dynamic# "14#
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which is the form obtained by Sih "0866#[ Martin and Wickham "0872# have obtained solutions
for harmonic loading of the penny shaped crack in an isotropic material[ Our solutions reduce to
those of Martin and Wickham\ by replacing rp1 with −rw1\ since solutions for harmonic loadings
in the time domain are similar for impact loadings in the Laplace transfer plane[

The functions fn"j\ p#\ G"j# and h are de_ned as

fn"j\ p# � zn0"j#
"0¦m1"j##

"m0"j#−m1"j##
Bn

0"j\ p# "15a#

G"j# �
ðzn0"j#"0¦m1"j##h0"j#−zn1"j#"0¦m0"j##h1"j#Ł

"m0"j#−m1"j##
"15b#

h �
C33"0¦M0#"0¦M1#ðzN0−zN1Ł

"M0−M1#
"15c#

The dual integral eqn "13# is a special form of the equation considered by Sneddon "0855#[ It
may be solved by following Sih and Chen "0870# if we take

fn"j# � j0:1 g
a

9

f n"t\ p#Jn¦"0:1#"jt# dt "16#

where f n"t\ p# is the solution of the Fredholm integral equation

f n"t\ p#¦g
a

9

f n"z\ p#Kn
0"z\ t# dz �

t"0:1#−n

h X 1
p g

t

9

r0¦nan"r\ p# dr

zt1−r1
"17#

and the kernel K"z\ t# is given by the integral expression

Kn
0"z\ t# � t g

�

9

j $
G"j#

h
−0% Jn¦"0:1#"jt#Jn¦"0:1#"jz# dj "18#

Since G"j# : h as j : �\ the integral given in "18# is convergent[ When p � 9\ that is\ for the
static case\ the kernel K"z\ t# vanishes since G"j#:h � 0 when p � 9[ Thus\ for static applied loads\
eqn "17# reduces to the form given by Sih and Chen "0870# or Chen "0855#[

If the material is isotropic\ then "17# reduces to the form obtained by Sih and Chen "0866# with
G"j\ p# replaced by `0"j\ p# as given in expression "14#[

3[ Symmetric stress intensity factor

With the symmetric part reduced to the solution of an integral equation\ an expression for the
opening mode "KI# stress intensity factor may now be determined[ If we take "05c#\ expand by
integrating by parts\ substitute "08# with z � 9 and use the de_nition for the opening mode stress
intensity factor "Sih and Chen\ 0870#\ we obtain in the Laplace transform plane
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K�I "p# � −
1h

pa
s
�

n�9

f n"a\ p# cos nu "29#

The stress intensity factor in the time domain is given by the inversion of "29#[

4[ Solution of the skew!symmetric part

The second half of the general dynamic loading is the skew!symmetric loading which may be
described by suddenly applied shear stresses on the crack faces[ If shear loads are applied at time
t � 9\ appropriate boundary conditions may be taken for z � 9 and 9 ¾ u ¾ 1p in the form

srz � −t0"r\ u#H"t# 9 ¾ r ¾ a "20a#

suz � t1"r\ u#H"t# 9 ¾ r ¾ a "20b#

szz � 9 r × 9 "20c#

u � v � 9 r × a "20d#

where t0 and t1 are given functions[
Application of the Laplace transform may be used to reduce eqn "20#[
Furthermore\ we may expand in Fourier series with coe.cients cn"r# and dn"r# given by

c9 �
0
p g

p

9

t0

p
"r\ u# du "21a#

cn � −
1
p g

p

9

t0

p
"r\ u# cos nu du n � 0\ 1\ [ [ [ "21b#

dn �
1
p g

p

9

t1

p
"r\ u# sin nu du n � 0\ 1\ [ [ [ "21c#

Applying eqn "19c# to "20c#\ the normal stress condition requires

Bn
1"j\ p# � −

""0¦m0"j\ p##C33¦rk1m0"j\ p##

""0¦m1"j\ p##C33¦rk1m1"j\ p##
Bn

0"j\ p# "22#

Substitution of "22# into "19a#\ "19b#\ "08a# and "08b#\ and use of the boundary conditions "20a#\
"20b# and "20d# results in the simultaneous dual integral equation

g
�

9

j"G0"j#Bn
0"j\ p#¦a2B

n
2"j\ p##Jn−0"jr# dj �

Cn¦Dn

1
9 ¾ r ³ a "23a#

g
�

9

j"G0"j#Bn
0"j\ p#−a2B

n
2"j\ p##Jn¦0"jr# dj �

Dn−Cn

1
9 ¾ r ³ a "23b#
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g
�

9

j"G1"j#Bn
0"j\ p#¦Bn

2"j\ p##Jn−0"jr# dj � 9 r × a "23c#

g
�

9

j"G1"j#Bn
0"j\ p#−Bn

2"j\ p##Jn¦0"jr# dj � 9 r × a "23d#

where Cn"r# � 1cn"r#:C33 and Dn"r# � 1dn"r#:C33 and

G0"j# �X 0
n0"j# $"0¦m0"j##−X n0"j#

n1"j#
""0¦m0"j##C33¦rk1m0"j##

""0¦m1"j##C33¦rk1m1"j##
"0¦m1"j##% "24a#

G1"j# � 0−
""0¦m0"j##C33¦rk1m0"j##

""0¦m1"j##C33¦rk1m1"j##
"24b#

When n � 9\ that is\ for the case of pure radial shear and no torsion\ the equations uncouple
and simplify so that Bn

2"j# � 9[
If we set

Bn
0"j\ p# � −1f"j\ p#\

G0"j\ p#
G1"j\ p#

�
C33

a1

a0a1G"j\ p#\

then f"j\ p# is given as

f"j# � j0:1 g
a

9

`n"t\ p#J2:1"jt# dt "25#

where `n"t\ p# is the solution of the Fredholm integral equation

`n"t\ p#¦g
a

9

`n"z\ p#Kn
1"z\ t# dz �

0
1G�X

1
pt g

t

9

r1C9"r\ p# dr

zt1−r1
"26#

and where the kernel Kn
1"z\ t# is given as

Kn
1"z\ t# � t g

�

9

j $a0a1

C33G"j\ p#
a1G�

−0% J2:1"jt#J2:1"jz# dj "27#

The constant G� is obtained when j : � and has a value given by

G� � lim
j:�
p:9

G0

G1

�
h

C33zN0N1

"28#

Because "G0"j#:G1"j##:G� : 0 as j : �\ the kernel is bounded at the upper limit[ Furthermore\
in the static limit\ that is\ when p � 9\ Kn

1"z\ t# � 9\ since "G0"j#:G1"j##:G� � 0[ Then\ eqn "26#
reduces to that obtained by Sih and Chen "0870# for the static counterpart of the loading under
consideration[

If the material is isotropic\ then we have
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a0a1

C33G"j\ p#
a1G�

�
g0

g1

`0"j\ p# "isotropic and dynamic# "39#

which is the form given in Sih "0866#[
When n − 0\ the solution of "23# is much more involved[ The solution follows if we de_ne

m � n−0\ f n
0"j\ p# � G�G1"j#B0"j\ p# and f n

1"j\ p# � AB2"j\ p#\ and then subtract from both sides of
"23a#\ the expression

g
�

9

j 00
g"j#
G

−01 f n
0"j\ p#¦0

a2"j#
A

−01 f n
1"j\ p#1 Jm"jr# dj "30#

and from "23b#\ the expression

g
�

9

j 00
g"j#
G

−01 f n
0"j\ p#¦00−

a2"j#
A 1 f n

1"j\ p#1 Jm¦1"jr# dj "31#

equation set "23# is reduced to a form of the simultaneous dual integral equations considered by
Westmann "0854#

g
�

9

j" f n
0"j\ p#¦f n

1"j\ p##Jm"jr# dj � h�0"r\ p# 9 ¾ r ³ a "32a#

g
�

9

j"−f n
0"j\ p#¦f n

1"j\ p##Jm¦1"jr# dj � h�1"r\ p# 9 ¾ r ³ a "32b#

g
�

9

"N�f n
0"j\ p#¦f n

1"j\ p##Jm"jr# dj � 9 r × a "32c#

g
�

9

"−N�f n
0"j\ p#¦f n

1"j\ p##Jm¦1"jr# dj � 9 r × a "32d#

where N� and A are constants de_ned as

N� �
zN2"M1−M0#

"0¦M0#"0¦M1#"zN0−zN1#
"33a#

A � lim
j:�

a2"j# � zN2 �XC33

C55

"33b#

and the right hand side of "32# is given by

h�0"r\ p# � h0"r\ p#−g
�

9

j"`00"j#f n
0"j\ p#¦`01f

n
1"j\ p##Jm"jr# dj "34a#
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h�1"r\ p# � h1"r\ p#−g
�

9

j"`10"j# f n
0"j\ p#¦`11"j# f n

1"j\ p##Jm¦1"jr# dj "34b#

with

`00"j# � 0a0a1C33

G"j#
a1G�

−01� `10"j# "35a#

`01"j# � 0
a2"j#

A
−01� −`11"j# "35b#

When p � 9\ that is\ for the static case\ `00 � `01 � `10 � `11 � 9 and h�0"r\ p# � h0"r# and
h�1"r\ p# � h0"r#[ Thus\ equation set "32# reduces to the equations given in Sih and Chen "0870# and
Chen "0855# for the general skew!symmetric loading of the static counterpart[

If the material under consideration is isotropic and the loading is dynamic\ then the quantities
`ij do not vanish\ but take on the forms

`00"j# � 0
g0

g1

`0"j\ p#−01� `10"j# "isotropic and dynamic# "36a#

`01"j# � 0
g1

Aj
−01� −`11"j# "isotropic and dynamic# "36b#

The simultaneous dual integral equations may now be solved by using Westmann|s approach[
The solution follows\ if we take

f n
0"j\ p# � j0:1 g

a

9

ðfn
0"t\ p#Jm¦"0:1#"jt#¦fn

1"t\ p#Jm¦"4:1#"jt#Ł dt "37a#

f n
1"j\ p# � j0:1 g

a

9

ðN�fn
0"t\ p#Jm¦"0:1#"jt#−fn

1"t\ p#Jm¦"4:1#"jt#Ł dt "37b#

with

fn
0"t\ p# �X 1

p

t−ðm−"0:1#Ł

"0¦N�# g
t

9

rm¦0h�0"r\ p# dr

zt1−r1
"38a#

fn
1"t\ p# � "0−N�# 6

fn
0"t\ p#
1

−0m¦
2
11t−ðm¦"2:1#Ł g

t

9

fn
0"t\ p#t−ðm¦"2:1#Ł dt7

−
t−ðm¦"2:1#Ł

z1p g
t

9

rm¦2h�1"r\ p# dr

zt1−r1
"38b#

The expressions for fn
0"t\ p# and fn

1"t\ p# can be further simpli_ed for numerical work by sub!
stituting for h�0 and h�1\ that is\ eqn "34#[ After some lengthy manipulations\ and substituting
m � n−0\ we obtain integral equations of Fredholm type for fn

0"t\ p# and fn
1"t\ p#[
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These integral equations are

fn
0"t\ p#¦g

a

9

"K00"z\ t#fn
0"z\ p#¦K01"z\ t#fn

1"z\ p## dz �X 1
p

t−ðn−"2:1#Ł

"0¦N�# g
t

9

rnh0"r\ p# dr

zt1−r1
"49a#

and

fn
1"t\ p#¦g

a

9

"K10"z\ t#fn
0"z\ p#¦K11"z\ t#fn

1"z\ p## dz

�X 1
p

"0−N�#

"0¦N�#tn 6
t"2:1#

1 g
t

o

rnh0"r\ p# dr

zt1−r1
−
0n¦

0
11

zt g
t

9

rnh0"r\ p#zt1−r1 dr7
¦

t−ðn¦"0:1#Ł

z1p g
t

9

rn¦1h1"r\ p# dr

zt1−r1
"49b#

where

K00"z\ t# �
t

"0¦N�# g
�

9

j"`00"j#¦N�`01"j##Jn−"0:1#"jz#Jn−"0:1#"jt# dj "40a#

K01"z\ t# �
t

"0¦N�# g
�

9

j"`00"j#−`01"j##Jn¦"2:1#"jz#Jn¦"0:1#"jt# dj "40b#

K10"z\ t# �
t
1 g

�

9

j"`10"j#¦N�`11"j##Jn−"0:1#"jz#Jn¦"2:1#"jt# dj#

−0
0−N�
0¦N�1 0n¦

0
11 g

�

9

"`00"j#¦N�`01"j##Jn−"0:1#"jz#Jn¦"0:1#"jt# dj¦
0−N�

1
K00"z\ t# "40c#

K11"z\ t# �
t
1 g

�

9

j"`10"j#−`11"j##Jn¦"2:1#"jz#Jn¦"2:1#"jt# dj

−0
0−N�
0¦N�1 0n¦

0
11 g

�

9

"`00"j#−`01"j##Jn¦"2:1#"jz#Jn¦"0:1#"jt# dj¦
0−N�

1
K01"z\ t# "40d#

In the case of static loading\ that is\ when p � 9\ eqns "49# and "40# reduce to those given in Sih
and Chen "0870# for the general skew!symmetric static loading since Kij"z\ t# � 9\ i\ j � 0\ 1 when
p � 9[

For an isotropic material under dynamic loading\ the equations have the same form as given by
"49# however\ the functions `ij"j\ p#\ i\ j � 0\ 1 are replaced with the forms as given in "36#[ If the
loading is due to torsion\ the sine term is interchanged with the cosine term and vice versa in
equations "19#\ then Bn

0"x\ p# � Bn
1"x\ p# � 9\ n � 9\ 0\ 1\ [ [ [ and B9

2"x\ p# satis_es the integral equa!
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tion obtained by Sih and Embley "0861# for the torsion of a penny shaped crack by impact loads
in an isotropic material[ Thus\ the solution for general loading reduces to the known special case
of twisting of a penny shaped crack by dynamic loads[

5[ Skew!symmetric stress intensity factors

With the solution to the skew!symmetric dynamic loading of the penny shaped crack given by
eqns "26# for n � 9 and "37a# and "37b# for n − 0\ the corresponding sliding "KII# and tearing mode
"KIII# stress intensity factors may be determined[

The stress intensity factors are obtained by expanding "19a# and "19b# using integration by parts
and then using the de_nitions for KII and KIII "Sih and Chen\ 0870#[

The stress intensity factors in the Laplace transform plane are obtained to have the forms

KII"p# �
C33

az1p 6−`"a\ p#G�¦1 s
�

n�9

ðfn
0"a\ p#−fn

1"a\ p#Ł cos nu7 "41a#

KIII"p# � −
C33

a X 1
p

s
�

n�0

ðN�fn
0"a\ p#¦fn

1"a\ p#Ł sin nu "41b#

The corresponding stress intensity factors in the time domain are given by the Laplace inversion
of these equations[

It is important to note that if the evenness and oddness of the loading are changed\ eqns "49#
are still valid provided that the sine term is interchanged with the cosine term and vice versa[ This
is the case for pure torsion and no radial shear[

6[ Numerical examples

In general\ dynamic loads on a penny shaped crack may be arbitrary in time\ as well as vary
along the faces of the crack[ By superposing the solution for a Heaviside type load\ solutions for
loads which are arbitrary in time can be constructed "Freund\ 0875^ or Rizza\ 0884#[

E!Glass Epoxy will be used in the examples which follow[ The material constants characterizing
this material "in 093 MPa# are] C00 � 0[382\ C01 � 9[5456\ C02 � 9[4133\ C22 � 3[616\ C33 � 9[3634
"Tsai\ 0877#[ The various parameters can be non!dimensionalized by de_ning T � tC1:a\ z � as\
x � aj\ P � pa:C1\ r � r:a and t � t:a[

The integrals will be evaluated numerically[ The improper integrals are _rst mapped from the
domain j $ ð9\ �Ł to x $ ð9\ 0Ł\ then the IMSL routine QDAG is used with a 29Ð50 point globally
adaptive GaussÐKronrod rule "Piesens et al[\ 0872#[ Such rules are designed for highly oscillatory
integrands[
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Example 0] Axisymmetric dynamic impact loads

The solution for dynamic axisymmetric loading of the penny shaped crack found in the Shindo
and Nozaki "0876# can be obtained from "17# and "29# through proper choice of the Fourier
coe.cients[

For axisymmetric dynamic loading\ the boundary condition "06a# takes the form

szz � −sH"t# 9 ¾ r ¾ a "42#

where s is a constant stress impacting over the crack faces at time t � 9[ After taking the Laplace
transform of "19# the only nonzero Fourier coe.cient given by eqn "11# is a9 � s:p[ Furthermore\
the severity of the crack is de_ned by the SIF as given by eqn "29#[ Since all but the _rst term in
the Fourier series expansion are zero\ the stress intensity factor becomes

K�0 �X 1
p

szaF9"a\ p# "43#

where

F9"t\ P# � −
Pht

s X pt

1
f 9"t\ P#

is the solution of "17# for n � 9[
Thus\ we have

F9"at\ P#¦
1
p g

0

9

tsF9"as\ P#K9
0"as\ at# ds � 0 "44#

with the kernel given by

K9
0"as\ at# � g

�

9 0
G"ax#

h
−01 sin "xt# sin "xs# ds "45#

where we have used J0:1"z# � z"1:pz# sin "z#[
The improper integral in "45# was solved using the IMSL routine QDAWF[ The integral eqn

"44# was solved using the method of Nystrom "Press et al[\ 0874# wherein\ the integral over s is
expanded in GaussÐLegendre quadrature points and weights[

The value of the corresponding static stress intensity factor is obtained from eqn "29#[ The
function f 9"a\ 9# may be obtained from static counterpart of eqn "17#\ that is\ when p � 9[ Then\
the integral over ð9\ aŁ in eqn "17# vanishes\ because K9

0"z\ t# � 9 since G"j#:h � 0 when p � 9[
Equation "17# becomes

f 9"t\ 9# � −
s

hX
1t
p g

t

9

r dr

zt1−r1
"46#

The integral on the right hand side of "46# is of elementary form[ Upon integration "46# becomes
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Fig[ 0[ Variation of Mode I non!dimensional SIF with T for axisymmetric loading[

f 9"t\ 9# � −
st2:1

z1ph
"47#

Now by substituting "47# with t � a into "29#\ along with n � 9\ the corresponding static stress
intensity factor is obtained

KIS �X 1
p

sza "48#

Notice that this is the well!known static SIF for a uniform axisymmetric loading of the penny
shaped crack "Kassir and Sih\ 0864#[

Equation "43# can be divided by "48# to give a non!dimensional SIF[ This stress intensity factor
can be obtained for all values of time by using the method of Papoulis "Miller and Guy\ 0855# to
carry out the Laplace inversion through numerical means[

The value of the axisymmetric opening mode dynamic SIF non!dimensionalized with respect to
KIS is plotted in Fig[ 0[ The results in Fig[ 0 may be compared to similar results obtained by Shindo
and Nozaki "0876#[ We obtain a maximum value of the non!dimensional SIF factor of 0[25 times
the static value at a non!dimensional time value of T � 0[4[ This is in agreement with the results
obtained by Shindo and Nozaki[
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Fig[ 1[ Penny shaped crack with concentrated normal loads P[

Example 1] Concentrated normal forces

Consider a penny shaped crack loaded by two concentrated loads of magnitude P applied at the
upper and lower crack surfaces at the points r � r9^ u � 2a by a unit step load at t � 9 "Fig[ 1#[

For the loading under consideration\ the Fourier coe.cients may be obtained by taking the
applied load in the form

s"t# � −
P
r

d"r−r9#d"u2a# "59#

then\ the Fourier coe.cients are obtained by substitution of "59# into "11#[
The Fourier coe.cients take on the forms

a9 �
0
p g

p

9

−
P
r

d"r−r9#d"u2a# du

� −
P
r

d"r−r9# "50a#
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an �
1
p g

p

9

−
P
r

d"r−r9#d"u2a# cos nu du

� −
1P
pr

d"r−r9# cos nu n � 0\ 1\ [ [ [ "50b#

Substitution of "50# into the right hand side of "17# and by the use of the non!dimensional
parameters de_ned previously along with the de_nition

f n"t\ P# � CnF
n"t\ P#H"t−r9#t0:1 "51#

reduces eqn "19# to

Fn"t\ P#¦
1
p g

0

r9

tsFn"s\ P#Kn
0"s\ t# ds �

0

tn¦0X 0−0
r9

t 1
"52#

where

Kn
0"s\ t# � g

�

9

x1 $
G"ax#

h
−0% jn"xt#jn"xs# dx "53#

in terms of jn"y# the spherical Bessel function of y which is de_ned as

jn"y# � 0
p

1z1
0:1

Jn¦0:1"y# "54#

In the Laplace transform plane\ the dynamic stress intensity factor\ KI"P#\ may be non!dimen!
sionalized by dividing by the corresponding value for a similar crack loaded by static forces\ KIS

"Sih and Chen\ 0870#[ The non!dimensional form of the dynamics SIF is obtained by inversion\
that is\

KI"T#
KIS

�
z0−r1

9

1pi gBr

F

H

H

H

f

F9"0\ P#¦1 s
�

n�0

rn
9F

n"0\ P# cos na cos nu

0¦1 s
�

n�0

rn
9 cos na cos nu

J

G

G

G

j

exp "PT# dP
P

"55#

where Br indicates the Bromwich path of integration[
In the case where r9 � 9\ the right hand side of "52# is singular[ In order to remove this singularity\

we take eqn "52# and de_ne

`9"at\ p# � F9"at\ P#−
0

tn¦0
"56#

Substitution of "56# into "52# along with n � 9 gives
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`9"at\ P#¦
1
p g

0

9

tsK9
0"as\ at#`9"az\ P# dz � −

1
p g

0

9

tK9
0"as\ at# dz "57#

The right hand side of "57# is no longer singular[ Furthermore\ it may be reduced from a double
to a single integral by substitution of K9

0"as\ at# and interchanging the order of integration\ that is\

−
1
p g

0

9

tK9
0"as\ at# dz � −

1
p

t g
�

9 60
G"ax#

h
−01 sin xt 0g

0

9

sin xs
s

ds17 dx

� −
1
p

t g
�

9 6Si"x# 0
G"ax#

h
−01 sin xt7 dx "58#

where Si"x# is the sine integral of x "Andrews\ 0874#[
The integral equation becomes

`9"at\ P#¦
1
p g

0

9

ts`9"az\ P#K9
0"as\ at# dz � −

1t

p g
�

9

Si"x# 0
G"ax#

h
−01 sin xt dx "69#

and K9
0"as\ at# is given by eqn "45#[

The inversion required by eqn "55# was achieved by using the numerical method of Papoulis
"Miller and Guy\ 0855#[ Equations "52# and "69# were solved using the method of Nystrom "Press
et al[\ 0874#[ It was found that the series expansions in "52# and "69# could be truncated after four
terms\ which gave an absolute error between the third and fourth term of less than 0[9×09−3[

The variation of the non!dimensional dynamic stress intensity factor with non!dimensional time
is plotted in Figs 2Ð6[ In particular\ Fig[ 2 shows the case when r9 � 9[9\ a � 9>[ As can be seen
from the _gure\ the dynamic stress intensity factor increases with time until it overshoots the static
value[ The maximum value of the overshoot is 21) larger than the static value[ This maximum
value occurs at T � 1[1[ As time progresses\ the value of the dynamic stress intensity factor
approaches the static value[

From Fig[ 3\ with r9 � 9[14\ a � 9>\ the maximum value of the dynamic overshoot is obtained
at u � p:1 and T � 0[2\ where the magnitude achieves a value of 0[25 times the static[ For u � 9\
the overshoot has a maximum value of 11) larger than the static SIF and occurs at T � 0[0[
Furthermore\ the time that it takes for the overshoot to occur increases as the angular position
from the load increases\ so that for u � 079>\ the overshoot occurs at T � 0[3[

If the load is moved to r9 � 9[4\ a � 9>\ then the amount of overshoot decreases as can be seen
by comparing Fig[ 3 and Fig[ 2[ As the applied loads are moved even farther from the center of
the crack to the position r9 � 9[64\ a � 9>\ the overshoot of the dynamic stress intensity factor
continues to decrease[ The maximum value for the overshoot still occurs at u � 89>\ where it
achieves a value of 0[14 times the static value at T � 0[0[ The values of the overshoot have
decreased to 4) larger than the static value at T � 0[0 for u � 89> and 0[03 times the static value
at T � 0[1 for u � 079>[

Thus\ by comparing Figs 3Ð5\ for any given value of u\ the magnitude of the dynamic overshoot
decreases as r9 increases[ This is because the integral in eqn "52# is due to the complex combinations
between the Laplace transform variable and the material constants[ As the radial position increases\
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Fig[ 2[ Non!dimensional SIF for normal applied loads at r9 � 9[9\ a � 9>[

Fig[ 3[ Non!dimensional SIF for normal applied loads at r9 � 9[14\ a � 9>[
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Fig[ 4[ Non!dimensional SIF for normal applied loads at r9 � 9[49\ a � 9>[

Fig[ 5[ Non!dimensional SIF for normal applied loads at r9 � 9[64\ a � 9>[
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Fig[ 6[ Non!dimensional SIF for normal applied loads at r9 � 9[14\ a � 234[9>[

that is\ as r9 : 0\ the contributions from this integral decrease[ Therefore\ the dynamic stress
intensity factor approaches the static value and the amount of dynamic overshoot decreases[

Moving the load from r9 � 9[14\ a � 9> to r9 � 9[14\ a � 234> reduced or increased the
magnitude of the overshoot depending on whether the load is moved closer or away from the point
of interest[ As shown in Fig[ 6\ the magnitude of the overshoot increased at u � 079> as the loads
were moved from a � 9> to a � 234> because the angular position increased[ Note that the time
required to reach the overshoot increased[ Again\ this is because the angular distance between the
load position and point of interest increased[

Example 2] Concentrated radial shear forces

As an example of the skew!symmetric loading of the crack\ we consider a penny shaped crack
loaded at t � 9 by two radial shear loads of magnitude Q placed at r � r9^ u � 2a as shown in
Fig[ 7[

For the loading under consideration\ the radial shear stress may be written as

trz"t# � −
Q
r

d"r−r9#d"u2a# "60#

Substitution of "60# into the expressions for the Fourier coe.cients "17# leads to
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c9 � −
Q
p

d"r−r9# cos na "61a#

cn � −
1Q
p

d"r−r9# cos na n − 0 "61b#

dn � 9 n − 9 "61c#

Then\ we may take

`"t\ P# � −
1Qrn

9zt

p"0¦N�#G�
G"t\ P#H"t−r9# cos na "62a#

fn
i "t\ P# � −X 1

p

1Qrn
9zt

p"0¦N�#
Fn

0"t\ P#H"t−r9# cos na "62b#

Substituting "62a# into "26#\ we obtain for n � 9

G"t\ P#¦
1
p g

0

r9

tsG"s\ P#K1"s\ t# ds �
0

t1X 0−0
r9

t 1
1

"63#

where

K1"s\ t# � g
�

9

x1 $a0a1

C33G"ax#
a1G�

−0% j0"xt#j0"xs# dx "64#

Substituting "62b# into "33a#\ we _nd for n − 0 that

F n
0"t#¦

1
p g

0

r9

ts"K00"s\ t#Fn
0"s#¦K10"s\ t#Fn

1"s## ds �
0

tnX 0−0
r9

t 1
1

"65#

where

K00"s\ t# �
0

"0¦N�# g
�

9

x1"`00"ax#¦N�`01"ax##jn−0"xs#jn−0"xt# dx "66a#

K01"s\ t# �
0

"0¦N�# g
�

9

x1"`00"ax#−`01"ax##jn¦0"xs#jn−0"xt# dx "66b#

In equation set "66#\ `10"j# has been replaced by `00"j#\ and `11"j# has been replaced by `01"j#
through expressions "30a# and "30b#\ respectively[

Likewise\ eqn "33b# becomes
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Fn
1"t#¦

1
p g

0

r9

ts"K10"s\ t#Fn
0"s#¦K11"s\ t#Fn

1"s## ds

� "0−N�#

F

G

j

J

G

f

0

1tnX 0−0
r9

t 1
1
−0n¦

0
11X 0−0

r9

t 1
1

J

G

f

F

G

j

−"0¦N�#
r1

9

1tn¦1X 0−0
r9

t 1
1

"67#

with the corresponding kernels "for n − 0#

K10"s\ t# �
0
1 g

�

9

x1"`00"ax#−N�`01"ax##jn−0"sx#jn¦0"xt# dx

−0n¦
0
11

"0−N�#
"0¦N�#t g

�

9

x"`00"ax#¦N�`01"ax##jn−0"sx#jn"xt# dx¦
"0−N�#

1
K00"s\ t# "68a#

K11"z\ t# �
0
1 g

�

9

x1"`00"ax#¦`01"ax##jn¦0"sx#jn¦0"xt# dx

−0n¦
0
11

"0−N�#
"0¦N�#t g

�

9

x"`00"ax#−`01"ax##jn¦0"sx#jn"xt# dx¦
"0−N�#

1
K01"s\ t# "68b#

Again\ the stress intensity factors KII and KIII may be non!dimensionalized by dividing by the
corresponding static values KIIS and KIIIS[

The non!dimensional stress intensity factors become

KII"T#
KIIS

�
0

1pi gBr

F

G

G

f

"0¦N�#G"0\ P#¦1 s
�

n�0

ðfn
0"0\ P#−fn

1"0\ P#Łrn
9 cos nu cos na

"0¦N�#G"0\ 9#¦1 s
�

n�0

ðfn
0"0\ 9#−fn

1"0\ 9#Łrn
9 cos nu cos na

J

G

G

j

e"PT# dP
P

"79a#

KIII"T#
KIIIS

�
0

1pi gBr

F

G

G

f

s
�

n�0

ðN�fn
0"0\ P#¦fn

1"0\ P#Łrn
9 sin nu cos na

s
�

n�0

ðN�fn
0"0\ 9#¦fn

1"0\ 9#Łrn
9 sin nu cos na

J

G

G

j

exp "PT# dP
P

"79b#

Again\ the inversion required by equation set "79# was carried out by the numerical method of
Papoulis "Miller and Guy\ 0855#[ The method of Nystrom "Press et al[\ 0874# was used to solve
the coupled simultaneous integral equations given by eqns "65# and "67#[

Even though the external loads are such that there is no torsional load acting on the crack\ there
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Fig[ 8[ Mode II non!dimensional SIF for radial shear loading[

is still a mode III stress intensity factor which varies with angular position on the crack[ This can
be seen from eqn "79b#[ In the special case of u � 9>\ KIII � 9[

In Fig[ 8\ we have plotted the non!dimensional mode II stress intensity factor for r9 � 9[14\
a � 9>[ As can be seen from the _gure\ the SIF varies with angular position[ Furthermore\ the
amount of dynamic overshoot depends on the angular position[ For instance\ for u � 9>\ the
overshoot is 0[04 times the static value and occurs at T � 0[3\ while at u � 89> and T � 0[5\ the
dynamic SIF is 0[95 times the static value[ A similar behavior can be seen in Fig[ 09\ for KIII\
although KIII � 9 for u � 9>\ for u � 34>\ the dynamic stress intensity factor reaches a value of
0[966 greater than the static value at T � 0[7[ When u � 89>\ the corresponding dynamic overshoot
is 0[176 times the static value and occurs at T � 1[

7[ Summary

We have derived the expressions for the non!axisymmetric dynamic loading of a penny shaped
crack in a transversely isotropic material[ The loading was divided into two parts] the symmetric
and skew!symmetric part[ Relations for the stress intensity factors were written in terms of
Fredholm second type integral equations "symmetric part# and coupled simultaneous Fredholm
integral equations "skew!symmetric part#[ In order to illustrate the solution of these integral
equations\ as well as to provide solutions which may be used as Green|s functions for more complex
loadings\ two separate numerical examples were considered[ The _rst of these examples involved
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Fig[ 09[ Mode III non!dimensional SIF due to applied radial shear[

the application of point forces at discrete locations along the crack surface[ The second example
considered the loading of the crack by discrete radial shear forces[

As typical for impact type dynamic loading problems\ the stress intensity factors were found to
reach values greater than their static counterparts[ This dynamic overshoot varied as a function of
angular position on the crack\ as well as the exact positioning of the external forces[

In the second example\ even though the external loads are such that there is no torsional load
acting on the crack\ the asymmetry of the loading gives a mode III stress intensity factor as well
as a mode II SIF which varies with angular position on the crack[
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